

FUTURE DEVELOPMENTS IN EDUCATIONAL SCIENCE AND TECHNOLOGY ENHANCED LEARNING

TON DE JONG

UNIVERSITY OF TWENTE

THE NETHERLANDS

OVERVIEW OF THE PRESENTATION

- Developments in education and related ICT developments
 - Focus on (collaborative) learning_with simulations
 - Cognitive aspects of inquiry learning
 - How to create educationally well designed simulations?
 - Open questions and future directions

DEVELOPMENTS IN EDUCATION

DEVELOPMENTS IN TECHNOLOGY ENHANCED LEARNING

- Constructive learning
 - Inquiry learning
 - Constructionism

- Computer simulations/games
- Modelling environments

Collaborative learning

- Shared representations
- Chats
- Scripts

Situated learning

- Realistic topics
- Simulators (e.g., medicine)

.

WHY SHOULD LEARNING WITH SIMULATIONS WORK?

- Inquiry learning; following a scientific investigation cycle (e.g., de Jong 2006, many others)
- Multiple representations (Ainsworth, 2006)
- Interactive visualizations (Lindgren & Schwartz, 2009)

Should lead to better integrated, more insightful, and more intuitive knowledge

AN EXAMPLE SIMULATION

BUT IT DOESN'T WORK JUST LIKE THAT! SCAFFOLDING IS NEEDED

- Orientation
- Hypothesis generation
- Experimentation
- Concluding
- Planning
- Monitoring
- Reflection

- Connecting representations
- Translating between representations
- Support to contrast cases

SIMULATION BASED LEARNING COMPARED TO TRADITIONAL, EXPOSITORY, INSTRUCTION

- If well designed, so scaffolds included, simulation show an advantage over expository instruction (large scale evaluations)
 - Shute & Glaser, 1990: Smithtown
 - White & Frederiksen,1998: *ThinkerTools*
 - Hickey, Kindfield, Horwitz, & Christie, 2003: GenScope
 - Linn, Lee, Tinker, Husic, & Chiu, 2006: *TELS*
 - de Jong, Hendrikse, & van der Meij, in press: SimQuest Math
- Effects on conceptual (intuitive) knowledge

SIMULATION BASED LEARNING COMPARED TO TRADITIONAL, LABORATORY, INSTRUCTION

- Students in simulation based environments score better than or at the same level as students in a real laboratory
 - Chang, Chen, Lin, & Sung, 2008
 - Klahr, Triona, & Williams, 2007
 - Van Klink, Wilhelm, & Lazonder, submitted
- Students learning in a sequence of simulation and real laboratory outperform the simulation and/or laboratory.
 - Zacharia & Anderson, 2003
 - Zacharia, 2007
 - Jaakkola & Nurmi, 2008
 - Zacharia, Olympiou, & Papaevripidou, 2008
- Effects on conceptual knowledge
- UNIVERSITY OF TWENTE.

THE EFFECTIVENESS OF INQUIRY LEARNING

A COMPARISON OF INSTRUCTIONAL STRATEGIES

- Performance (different types of knowledge):
 - EL > IL > (HL = OL)
 - For far transfer IL scores higher
- Efficiency:
 - HL > (IL = OL) > EL

Eysink, T.H.S., de Jong, T., Berthold, K., Kolloffel, B., Opfermann, M., & Wouters, P. (in press). Learner performance in multimedia learning arrangements: an analysis across instructional approaches. *American Educational Research Journal*

HOW TO DESIGN SUPPORTIVE INQUIRY ENVIRONMENTS? PROBLEMS IN INQUIRY LEARNING

- Poor hypotheses
 - Ineffective experiments
 - Engineering approach
 - Mistakes in data interpretation
 - No planning and monitoring (floundering)
 - etc.

SCAFFOLDS

- Assignments
- Explanations
- Model sequencing
- Monitoring facilities
- Hypothesis scratchpad

- Prompts
- Hints
- Data interpreters
- Etc. etc.

de Jong, T. (2006). Computer simulations -Technological advances in inquiry learning. *Science*, *312*, 532-533.

SCAFFOLDS AND COLLABORATIVE INQUIRY

COLLABORATIVE INQUIRY

- Differences in opinion should lead to discussion and progress in learning
 - Okada and Simon (1997)
 - Gijlers, H., & de Jong, T. (2005). The relation between prior knowledge and students' collaborative discovery learning processes. *Journal of Research in Science Teaching*, *42*, 264-282.
- Focus on hypothesis generation
 - Gijlers, H., & de Jong, T. (2009). Sharing and confronting propositions in collaborative inquiry learning. *Cognition and Instruction*, 27, 239-268.

SUPPORTING COLLABORATIVE INQUIRY

SHARED PROPOSITION LIST

PROPOSITION SCRATCHPAD

🖲 scrato				E
lf	m_total	▼ increa	ases	
then	vt	- decrea	ases	
🗖 if also				
	lf m_t	otal increases, then vt	decreases	
Proposition	eeds testing			
	Add Remove			
proposition		answer	test	
If m_total inc	reases, then vt decreases	true	untested	
If F_drive dec	reases fast, then vt decreases	true	tested	

RESULTS (IN A NUTSHELL)

- Shared proposition table condition:
 - significantly higher learning gains than shared hypothesis scratchpad and control
- Shared proposition table condition:
 - discussed significantly more unique propositions (on which they disagreed)
 - explored a larger proportion of the simulated domain
 - A positive correlation between number of unique propositions and test scores was found

HOW TO COME FROM COGNITION TO TEL SYSTEMS? INQUIRY PROCESSES,

- Basic research
 - Experimental studies (smaller (n = approx 25 per condition) or larger number (n = 100+ per condition) of students)
 - Small scale, qualitative, studies
 - In realistic situations
- Usability studies
 - (Larger scale) applications

TECHNIQUES USED

- Experimental manipulations: pre-test post-test control group design
- Knowledge tests, questionnaires
- Process analysis
 - Thinking aloud protocols
 - Log-file analysis
 - Chat analysis
 - Neuropsychological techniques

EXAMPLE OF A STUDY WITH NEURO-TECHNIQUES

- Question: How do students process different representations?
 - 18 subjects, within subject design
 - Four representations: Concrete, Formula, Table, Graph
 - No task and task conditions (identify values)
- EEG: Event related potentials
- Van Leeuwen, Th., van der Meij, J. & de Jong, T. (submitted). Eventrelated potentials as a window on external representations

REPRESENTATIONS USED

M = F x a = 200 N x 200 mm = 40000 Nmm

	100000 - M	[Nmm]		
	80000 -			
	60000			
	40000 _		/	
	20000	\nearrow		
-300 -250 -200 -150	-100 50 -0	50 10		200 250
	-20000			a [mm]
	-40000 _			
	-60000			
	-80000 _			

F	alpha	beta	I.	а	М
- 350	90	0	200	200	-70000
- 300	90	0	200	200	-60000
- 250	90	0	200	200	-50000
- 200	90	0	200	200	-40000
- 150	90	0	200	200	-30000
- 100	90	0	200	200	-20000
- 50	90	0	200	200	-10000
0	90	0	200	200	0
50	90	0	200	200	10000
100	90	0	200	200	20000
150	90	0	200	200	30000
200	90	0	200	200	40000
250	90	0	200	200	50000
300	90	0	200	200	60000
350	90	0	200	200	70000

RESULTS

- Behavioral data
 - Accuracy: picture > formula, graph, table
 - Reaction time: formula < graph, picture < table
 - ERP
 - No task condition
 - P1 (sensory analysis): picture > formula
 - P3 (cognitive processing): picture > formula
 - Task condition
 - P3 (cognitive processing): graph > formula

BUT THERE IS MORE

- General considerations
 - Interactive
 - Fast Immediate Always
 - Dynamic

- Multi-faceted (not boring)
- Socially entrenched

- Practical considerations
 - The length of a lesson
 - Examination requirements
 - Technical constraints
 - The skills of the teacher
 - Etc. etc.

RESEARCH AGENDA

- The role of "products" to design
 - Models (qualitative and quantitative)
 - Concept maps
 - Assignments
- The role of representations
 - Affordances of different types of representations (textual, arithmetical, graphical)
 - Multiple representations
 - Collaboration and inquiry
 - Interaction between task related activities and communicative activities
- Process analysis/Adaptive environments/Individual differences
 - Interaction data
 - Neuropsychological data
 - Assessment of models
 - Educational data mining

CONCLUSIONS

- TEL is a combination of
 - Cognition
 - Technology
 - Educational science
- Doing "in vivo" research has many challenges
- But we are the edge of exiting developments!

