FUTURE DEVELOPMENTS IN EDUCATIONAL SCIENCE AND TECHNOLOGY ENHANCED LEARNING

TON DE JONG

UNIVERSITY OF TWENTE

THE NETHERLANDS
OVERVIEW OF THE PRESENTATION

- Developments in education and related ICT developments
- Focus on (collaborative) learning with simulations
- Cognitive aspects of inquiry learning
- How to create educationally well designed simulations?
- Open questions and future directions
DEVELOPMENTS IN TECHNOLOGY ENHANCED LEARNING

- Constructive learning
 - Inquiry learning
 - Constructionism
 - Computer simulations/games
 - Modelling environments

- Collaborative learning
 - Shared representations
 - Chats
 - Scripts

- Situated learning
 - Realistic topics
 - Simulators (e.g., medicine)
EXAMPLES OF OUR WORK IN TWENTE

- SimQuest
- Co-Lab
- KMQuest
- ZAP
- SCY

UNIVERSITY OF TWENTE.
WHY SHOULD LEARNING WITH SIMULATIONS WORK?

- Inquiry learning; following a scientific investigation cycle (e.g., de Jong 2006, many others)
- Multiple representations (Ainsworth, 2006)
- Interactive visualizations (Lindgren & Schwartz, 2009)
- Should lead to better integrated, more insightful, and more intuitive knowledge
AN EXAMPLE SIMULATION

\[M = F \times a = 150 \text{ kN} \times 17.3 \text{ m} = 2598 \text{ kNm} \]

<table>
<thead>
<tr>
<th>Exo Nr</th>
<th>beta</th>
<th>a</th>
<th>alpha</th>
<th>F</th>
<th>i</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>30.0</td>
<td>17.3</td>
<td>120.0</td>
<td>150.0</td>
<td>20.0</td>
<td>2598.1</td>
</tr>
</tbody>
</table>

UNIVERSITY OF TWENTE.
BUT IT DOESN’T WORK JUST LIKE THAT!
SCAFFOLDING IS NEEDED

- Orientation
- Hypothesis generation
- Experimentation
- Concluding
- Planning
- Monitoring
- Reflection

- Connecting representations
- Translating between representations
- Support to contrast cases
SIMULATION BASED LEARNING COMPARED TO TRADITIONAL, EXPOSITORY, INSTRUCTION

- If well designed, so scaffolds included, simulation show an advantage over expository instruction (large scale evaluations)
 - Shute & Glaser, 1990: Smithtown
 - White & Frederiksen, 1998: ThinkerTools
 - Hickey, Kindfield, Horwitz, & Christie, 2003: GenScope
 - de Jong, Hendrikse, & van der Meij, in press: SimQuest Math

- Effects on conceptual (intuitive) knowledge
Students in simulation based environments score better than or at the same level as students in a real laboratory

- Chang, Chen, Lin, & Sung, 2008
- Klahr, Triona, & Williams, 2007
- Van Klink, Wilhelm, & Lazonder, submitted

Students learning in a sequence of simulation and real laboratory outperform the simulation and/or laboratory.

- Zacharia & Anderson, 2003
- Zacharia, 2007
- Jaakkola & Nurmi, 2008
- Zacharia, Olympiou, & Papaevripidou, 2008

Effects on conceptual knowledge
THE EFFECTIVENESS OF INQUIRY LEARNING

Situation: each runner has a T-shirt with a different colour: red, green, pink, or yellow. What is the probability (p) of the following score:

1. red
2. green
3. pink
4. yellow

Answer:

\[p = \frac{1}{120} \]
A COMPARISON OF INSTRUCTIONAL STRATEGIES

- Performance (different types of knowledge):
 - $\text{EL > IL > (HL = OL)}$
 - For far transfer IL scores higher

- Efficiency:
 - $\text{HL > (IL = OL) > EL}$

HOW TO DESIGN SUPPORTIVE INQUIRY ENVIRONMENTS?

PROBLEMS IN INQUIRY LEARNING

- Poor hypotheses
- Ineffective experiments
- Engineering approach
- Mistakes in data interpretation
- No planning and monitoring (floundering)
- etc.
SCAFFOLDS

- Assignments
- Explanations
- Model sequencing
- Monitoring facilities
- Hypothesis scratchpad

- Prompts
- Hints
- Data interpreters
- Etc. etc.

SCAFFOLDS AND COLLABORATIVE INQUIRY

What was done?

Which variables?
Which hypothesis?
Which variables?
What results?
Which conclusion?

What next?

Orientation
Planning
Monitoring

Hypothesis
Experiment
Conclusion

UNIVERSITY OF TWENTE.
Differences in opinion should lead to discussion and progress in learning

- Okada and Simon (1997)

Focus on hypothesis generation

SUPPORTING COLLABORATIVE INQUIRY

- Domain Kinematics (velocity, acceleration etc.);
- SimQuest simulation
- Three conditions
- Shared proposition table
- Shared hypothesis scratchpad
- Control - Without scaffolds
- Pre-post test of different kinds (definitional, intuitive, propositional)
- Qualitative analysis of chats
- 66 students (±15 years old); heterogeneous dyads

UNIVERSITY OF TWENTE.
SHARED PROPOSITION LIST

Proposition list

Learner 1

Learner 2

Start relevant experiment

UNIVERSITY OF TWENTE
PROPPOSITION SCRATCHPAD

The scratchpad contains a logical expression:

```
if m_total increases
then V decreases
if also
```

The proposition needs testing. The table below shows the propositions and their truth values:

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Answer</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>If m_total increases, then V decreases</td>
<td>true</td>
<td>untested</td>
</tr>
<tr>
<td>If drive decreases fast, then V decreases</td>
<td>true</td>
<td>tested</td>
</tr>
</tbody>
</table>
RESULTS (IN A NUTSHELL)

- Shared proposition table condition:
 - significantly higher learning gains than shared hypothesis scratchpad and control
- Shared proposition table condition:
 - discussed significantly more unique propositions (on which they disagreed)
 - explored a larger proportion of the simulated domain
- A positive correlation between number of unique propositions and test scores was found
HOW TO COME FROM COGNITION TO TEL SYSTEMS?

INQUIRY PROCESSES,

- Basic research
 - Experimental studies (smaller (n = approx 25 per condition) or larger number (n = 100+ per condition) of students)
 - Small scale, qualitative, studies
 - In realistic situations

- Usability studies
 - (Larger scale) applications

UNIVERSITY OF TWENTE.
TECHNIQUES USED

- Experimental manipulations: pre-test post-test control group design
 - Knowledge tests, questionnaires
 - Process analysis
 - Thinking aloud protocols
 - Log-file analysis
 - Chat analysis
 - Neuropsychological techniques
Question: How do students process different representations?

- 18 subjects, within subject design
- Four representations: Concrete, Formula, Table, Graph
- No task and task conditions (identify values)

EEG: Event related potentials

\[M = F \times a = 200 \text{ N} \times 200 \text{ mm} = 40000 \text{ Nmm} \]
RESULTS

- Behavioral data
 - Accuracy: picture > formula, graph, table
 - Reaction time: formula < graph, picture < table
- ERP
 - No task condition
 - P1 (sensory analysis): picture > formula
 - P3 (cognitive processing): picture > formula
 - Task condition
 - P3 (cognitive processing): graph > formula
BUT THERE IS MORE

- **General considerations**
 - Interactive
 - Fast – Immediate - Always
 - Dynamic
 - Multi-faceted (not boring)
 - Socially entrenched

- **Practical considerations**
 - The length of a lesson
 - Examination requirements
 - Technical constraints
 - The skills of the teacher
 - Etc. etc.
RESEARCH AGENDA

- The role of “products” to design
 - Models (qualitative and quantitative)
 - Concept maps
 - Assignments
- The role of representations
 - Affordances of different types of representations (textual, arithmetical, graphical)
 - Multiple representations
- Collaboration and inquiry
 - Interaction between task related activities and communicative activities
- Process analysis/Adaptive environments/Individual differences
 - Interaction data
 - Neuropsychological data
 - Assessment of models
 - Educational data mining

UNIVERSITY OF TWENTE.
CONCLUSIONS

- TEL is a combination of
 - Cognition
 - Technology
 - Educational science
- Doing “in vivo” research has many challenges
- But we are the edge of exiting developments!

UNIVERSITY OF TWENTE.